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ABSTRACT

A new approach for solving electromagnetic wave propagation problems is currently
being developed at the Naval Command, Control and Ocean Surveillance Center
(NCCOSC), RDT&E Division (NRaD). This new approach is based upon an 8 by 8 matrix
representation of the Maxwell field equations. In addition, a computer software package
based on this matrix representation of electromagnetic theory is also being written and
tested at NRaD to handle a variety of scenarios involving electromagnetic wave
propagation through matter. This software package is referred to as the MATURE
Program. MATURE is the acronym for Matrix Approach To Understanding Relativistic
Electrodynamics. The MATURE Program is written in MATLAB code for use on a Sun 4
SPARCstation 2 workstation. Under Independent Research (IR) FY 92 funding, this
matrix approach was successfully employed in solving problems dealing with
electromagnetic wave propagation through dielectric, crystalline, linear electro-optic,
and magneto-optic materials of infinite extent. Under the Office of Naval Research
(ONR) FY 93 funding, this matrix formulation was extended to handle problems
involving wave propagation through multilayer dielectric media with planar
boundaries. Presented in this technical document is the underlying theory of this matrix
approach. Several numerical examples, based on the use of the MATURE Program, are
also included to illustrate the use of the matrix approach in solving electromagnetic
wave propagation problems.
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1.0 INTRODUCTION

In Part I of this series (Bocker & Frieden, 1992), a new matrix formulation of classical
electromagnetic theory for vacuum is presented. The basis of this formulation is a ske%-
Hermitian space-time 8 by 8 differential matrix operator. There it was shown that the
vector form of the Maxwell field equations for vacuum can be cast into a compact matrix
form. From the matrix form of the Maxwell field equations, other fundamental results of
electromagnetic theory are easily derived with use of the simple matrix multiply
operation: (1) the electromagnetic wave and charge continuity equations; (2) the Lorentz-
and Coulomb-gauge definitions of the electromagnetic potentials; (3) the wave equations
for the potentials; and (4) Poynting's theorem on energy conservation. Taking the four-
dimensional Fourier transform of the matrix form of Maxwell's equations leads to: (5) a
Fourier representation of the Maxwell field equations; (6) their inversion, for the fields
directly in terms of the sources in Fourier-space; and (7) corresponding inversion
formulae in direct-space through the use of the convolution theorem. In Part II of this
series (Bocker, 1992), the 8 by 8 electromagnetic matrix formulation for vacuum was
extended to include the presence of matter. Emphasis was placed on electromagnetic
wave propagation through linear, homogeneous, and anisotropic optical materials of
infinite extent without boundaries. The matrix form of the Maxwell field equations was
cast into an 8 by 8 matrix eigenvalue representation. In this technical document, we
present the underlying theory for solving electromagnetic wave propagation problems
involving multilayer dielectric materials with parallel planar boundaries. The matrix
representation of the Maxwell field equations plays a central role in this investigation as
well. As will be shown, boundary conditions are automatically taken into account by
partitioning both the electromagnetic wavefunctions and the dielectric, permeability,
and conductivity matrices of the dielectric medium using Heaviside unit step functions.

Because of the power of matrix operations, many of the fundamental relationships
and results in electromagnetic wave propagation theory are easily derived without the
need for the usual plethora of vector calculus identities that have become the standard in
these derivations. Instead, mathematical operations involving matrix multiplication,
matrix inversion, and eigensolutions of matrices can be employed. Available off-the-
shelf computer software packages, like MATLAB and MATHEMATICA, are well suited
for these matrix operations. A computer software package entitled MATURE is currently
being written and tested at NRaD to handle a variety of scenarios involving
electromagnetic wave propagation through matter. MATURE is the acronym for Matrix
Approach To Understanding Relativistic Electrodynamics. The MATURE program is
being written in MATLAB code for use on a Sun 4 SPARCstation 2 workstation.
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2.0 THEORY

In this section, we will derive the equations for predicting the reflection and
transmission characteristics of a multilayer dielectric medium with planar boundaries
illuminated by a monochromatic electromagnetic plane-wave. We will begin with the
vector form of the Maxwell field equations for matter. The vector form of the Maxwell
field equations will then be cast into the compact matrix form described in Parts I and 1I
of this series. The matrix form will then be specialized to dielectric materials. Next, the
dielectric medium will be partitioned into a multilaver medium with planar boundaries
using Heaviside unit step functions. As will be shown, the electromagnetic boundary
conditions at each of the planar interfaces will be automatically taken into account using
this approach. Then, monochromatic electromagnetic plane-wave solutions will be
considered. This will lead to system operator description of wave propagation through
the multilayer medium. The operator description will then be used to calculate the
reflection and transmission characteristics of the multilaver medium for arbitrarily
chosen wavelengths, angles of incidence, and polarization states of the incident
electromagnetic radiation.

2.1 THE MAXWELL FIELD EQUATIONS

The fundamental equations of classical electromagnetic phenomena, namely the
Maxwell field equations, serve as our starting point. In the Gaussian system of units, the
four Maxwell field equations in vector form are given by the following (Jackson, 1962):

Ampere-Maxwell law

VxH(r,t) = I )D(r,t) + 4nje (r, t) (1)c~t c

Gauss' law for electricity

V.D (r, t) = 4 ,pe(r, t) (2)

Faraday's law of induction

VxE(r, t) I a B(r, t)- Jm (r,t) (3)VErt) ct c

Gauss' law for magnetism

VeB (r, t) = 47p m (r, t). (4)
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The physical quantities appearing in the Maxwell field equations are: E (r. t) the

electric field; D (r, t) the electric displacement; B (r. t) the magnetic induction; H (r. t)

the magnetic field; I' (r, t) the electric current density; JI'" (r, 0) the magnetic current

density; pe (r, t) the electric charge density; p"' (r. t) the magnetic charge density;
(r, t) a space-time point; V the del operator; and c represents the speed of light in

vacuum. Both magnetic charge and current densities (Magid, 1972) have been included

in Maxwell's equations for purposes of completeness. They, of course, can be set equal to

zero since magnetic charge has not been discovered in nature. The electric displacement

and electric field vectors, as well as the magnetic induction and magnetic field vectors,

are related (Jackson, 1962) through the mathematical expressions

D(r,t) = E(r,t) +471 P(r,t) (5)

and

B(r,t) = H(r,t) +4n M(r,t), (6)

where P (r, t) and M (r, t) are the macroscopic polarization and magnetization vectors.

The Maxwell field equations (1) through (4), with the use of equations (5) and (6), can
be cast (Bocker, 1992) into the following covariant matrix equation

F1 M2 1F0]1]d= 4/ FS 12]1

M 2 M ]M 1  a "

This matrix representation of the Maxwell field equations forms the basis for all other

work described in this report. For the Lorentz gauge choice (Bocker & Frieden, 1992), the

4 by 4 differential matrix operators [M1] and [M2 ] are defincd by the equation

0 0

0 0 _-_ aa3 a -y 0 - --[ - and (8)

0 2 _ o 00
W)1 z Wy 0x

aD iyd 0 0 0 0LaOx ay az &C
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where

r = (x, y/ Z) and tr ict. (9)

The imaginary quantity i is equal to 4-1. The matrix ) OJ in equation (7) represents the

4 bv 4 null matrix. The 4 bv I electric and magnetic field vectors and I fI appearing

in equation (7) are defined by

and (10)

L0J -0-1

The 4 by I polarization and magnetization vectors Id and Idl are defined by

[d i hPy and [d MY01)
LPj 2 0j

-0] L 0 1

The electric and magnetic source vectors Is[j and Is21 appearing in equation (7) are

relativistic 4-vectors defined by

x I
le

Ls1~W and 2]- jm  (12)

icp'2 icpmj

It is through the polarization, magnetization, and source vectors that the material

characteristics of the medium are mathematically described. As previously indicated,

our interest concerns dielectric, i.e., linear, homogeneous, isotropic, and conductive

materials only.
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2.2 DIELECTRIC MEDIUM

For a linear medlium, the polariz- .,,n and magnet IzaIion vectors, 1,41 and I. , are

related to the electric and magnriv- field vectors, [If I and I f.,] by the matrix equation

I I = • ,;2,,,(13)

where [7x• and II are the 4 by 4 electric and magnetic susceptibility ten-sors
(matrices) respectively. Substitution of equation (13) back into equation (7) gives

S I (14)LO mL•: .] M~LO 'M1f

The 4 by 4 dielectric and permeability matrices, tel and I , are related to the electric

and magnetic susceptibility matrices by the equations

EI [11 +47r1XA (15)

and

[p] S III +4nI[X ] (16)

where III is the 4 bv 4 identity matrix. With the use of equations (15) and (16), matrix

equation (14) can be written in the form

M_ 47t<1

M f -L (17)

For a medium having electrical conductive properties, the electric source vector Ist

appearing in equation (17) obeys Ohm's law

r-ia• 0 1, t(1!

0 C) L 0'
s L
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where [a! is the 4 bv 4 electrical conductivity matrix. Note, in the absence of magnetic

charge, the magnetic source vector Is.) mav be set equal to zero. With the use of

equation (18), matrix equation (17) can be written in the form

=i (19)
M., NI p. f, 0

where [ol is a 4 by I null vector and where by definition

4it4n'! = -101. 
(20)

C

Equation (19) is the matrix representation of the Maxwell field equations for a linear,

conductive medium of infinite extent. If the medium is isotropic and homogeneous as

wVell, the 4 bv 4 matrices Icl, I P1, and to! appearing in equations (19) and (20) have

the simplified diagonal form

0 0]
o0006 0000 0 010 E: 0 01, 411 = P 0 0IT = 0 Y 0 0 . (21)

I =!0 0 e 01= 0 0 P 0 0= 050(

L 0 0 O 0L 0 0 0 0 01-

For this case, all of the nonzero main-diagonal elements in each of these 4 by 4 matrices

are equal to a scalar constant, which is independent of position and time. Hence, the

dielectric medium being considered here may be simply described by the three scalar

constants £, ýi, 0.

2.3 MULTILAYER DIELECTRIC MEDIUM

We no,,, consider the geometry shown in figure 1. This figure depicts a multilaver

optical medium consisting of N layers sandwiched between a left and right semi-infinite

subregion of space. Each laver represents a dielectric subregion of space. Adjacent layers

are separated by parallel planar interface boundaries orthogonal to the z-axis. The

multilaver medium is illuminated by an electromagnetic wave incident from the left.

This gives rise to both a reflected and a transmitted electromagnetic wave. The principal

objective in solving a problem of this nature is to determine the characteristics of the

reflected and transmitted waves in terms of the properties of the incident wave as well as

the optical and geometrical properties of the multilaver medium.

6



Layer

0 1 2 3 • N N+1

Reflected Field

Transmitted Field

-z-Axis
:..x.. :i:• :j::1::.. • : : .

Incident Field
Z0  Z1  Z'  Z3 ZN-i ZN

Figure 1 Multilayer geometry.

For a multilayer optical medium, the three matrices appearing in equation (21) are

now a function of the spatial coordinate z. We can write these matrices in the form

N÷1

Yl = E] ["lT" (Z) (22)

[ n = (22

N+I

[i] = P, (z) (23)

n=0

N+7

1• cl•() (24)

n=O
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The matrices [el,,, f[l., and [alc, represent the Jielectric, permeability, and

conductivity matrices associated with subregion n. The functions T, (Z), hereafter

denoted partition functions, are used in partitioning space nto the various subregions

depicted in figure 1. These partition functions are defined in terms of the Heaviside step

function (Bracewell, 1965). The reader is referred to appendix A, which contains a more

detailed description of the partition functions as well as their properties.

The electromagnetic field vector appearing in equation (19) may also be partitioned

in a similar manner. That is,

HN+lf1
f ]= fTf (25)

f2j I f~

where [fl f 21 T is the electromagnetic field vector associated with subregion n. The

superscript T refers to transpose. Next, we substitute equations (22) through (25) back

into equation (19). Using the multiplicative property (see appendix A) of the partition

functions *,,(z) gives the following matrix representation of the Maxwell field

equations for a dielectric multilayer optical medium

N + I

I=7M (26)
xL~ziYA :nl{i~(Z} [0]

where by definition

" IM E +iy M , [M IEn+ Yn M-2 • (27)MI M2 I j MI m1t

Notice the similarity between the matrix form (26) of the Maxwell field equations for a

multilayer medium and the matrix form (19) for an infinite medium without boundaries.

Next, we will show that the matrix representation (26) of the Maxwell field equations for

a multilayer medium has the electromagnetic boundary conditions built into the

representation. There is no need to consider 'he use of the Divergence Theorem and

Stoke's Theorem in establishing the boundary conditions of the electromagnetic fields at

the various planar interfaces.

8



With the use of the product rule from calculus (Wylie, 1953), equation (26) takes on
the following form

N+1I N,1 F ,-- ~ -
]if, M _f ) IC eC2 (2)8)

(Z M, M1 I n(Ic, CJ
L =j0 nfr n=O L - lii,..

where from appendix A

D(z) A- d (z). (29)
dz (9

The matrices [C1J and [C2- appearing in equation (28) are given by

0 0 0 0 +1 0 0 0[C1 ] = 0Oj and = -100= (30)0 0 0-1 0 0 0 0

0 0 +1 0 Lo 0 0 0

With the use of equations (A.5), (A.6), and (A.7) from appendix A, we can rewrite

equation (28) in the form

N +1T , (z) I -+ i -Y M 2] 
(31N1 F M l f 1 C YMjj(31)

n=0 L M 2  M 1  [ 2

+X6(z -ZP)V(r]f]E C2] 0
P) _C C , Ce fo "]0

It is of interest to noLe that the first sum appearing in equation (31) is nothing more than
a mathematical statement of the fact that the Maxwell field equations must be satisfied

for each dielectric subregion n, (n = 0, 1, 2 ... , N + 1). The second sum appearing in

equation (31) contains the boundary conditions that must be satisfied at each planar

interface boundary z = z, (p = 0, 1,2, ... , N) separating the various subregions of

9



space. For equation (31) to be satisfied at all points in space, the following two sets of

matrix equations must be satisfied:

Maxwell field equations in each subregion n

lc+i7 M, 0!
"M M = (n = 0, 1,2, ... N + 1) (32)

Boundary conditions at each planar interface z = zP

CL• 21 fl = KC C2] + il (p= 0, 1.2 N). (33)

Next, we will consider the case of monochromatic plane-wave solutions. Appendix B

contains a detailed mathematical discussion on monochromatic plane-wave solutions of
matrix equation (19), or equivalently matrix equation (32), and their resulting properties.

In addition, appendix C contains a detailed mathematical discussion on the boundary

condition equation (33) for the case of monochromatic plane-wave solutions. It is highly

advisable at this point for the reader to become familiar with the concepts and notation
presented in these appendices before continuing on.

2.4 ELECTROMAGNETIC PLANE-WAVE FIELDS

Suppose the dielectric multilayer optical medium depicted in figure 1 is illuminated
by a monochromatic electromagnetic plane-wave, hereafter referred to as simply the
incident wave. The incident wave will give rise to both a transmitted and a reflected

monochromatic electromagnetic plane-wave as shown in figure 1. In addition, as a result

of the incident wave excitation, each layer within the multilayer medium will support

two monochromatic electromagnetic plane-waves propagating in opposite directions
(Fowles, 1968). Therefore, the electromagnetic field vectors appearing in equations (32)

and (33) must be of the form

[ 1 (34)

10



where each of the field vectors on the right-hand side of equation (34) has a

monochromatic plane-wave representation given by equation (B.2) in appendix B,

namely

fojR = K lilrexpirIkR 1( 35)

Lft l= L exp{i[rrT [k] a}. 
(36)2]L Lf02 L

The subscripts R and L appearing in equations (34) through (36) denote wave

propagation to the right and left respectively. Substitution of equation (34) back into

equation (33), with the use of equations (35) and (36), gives the following equation

[G 01 p{0lI exp(+ izpkz)+ f1 exp(-izPk)) (37)

[G 0] I{[f,]exp exp (-izpk,)
P+l O2RfO2 1. p l

The mathematical details le ,Jng up to equation (37) are presented in appendix C. The

above 4by4 mat ices [G1 ] and [G2 ] are given by equation (C-4).

The electric field vector [f01] and magnetic field vector Vf02] appearing in equation

(37) are not independent, but are in fact related to one another through equation (B.20) in

appendix B. With the use of equation (B.20), we can eliminate the magnetic field vectors,

for example, from equation (37). Doing so allows us to cast equation (37) into the

following matrix form

S 1(z7 ) S 12(z P) Ifcl I 1(zP) S1 (zP) r Ifol (8
S (z) 2 (zP)j LfS' (z ) S2 (Z P)J I [fo• (38)

11



where

S II ( ) 12(Z G IF , (Z) G IF , (z) (39
S (-) (z) ( GFC1 (z) R F2 (z)

and

F1 (z)- [I] exp(+izk,) and [F,(z)- [I exp (-izk,) (40)

[R]=-i -Ic~t+C(1 and [Ll- -1 1(aX+Xi,. (41)

The matrix [1] in equation (40) is again the 4 by 4 identity matrix. The 4 by 4 direction

cosine matrices [a 1] and [(x2 ] are defined by equation (B.9) in appendix B. The
quantity 9 is the complex dielectric constant, also defined in appendix B. Matrix
equation (38) summarizes the relationship between the electric field vectors associated

with the electromagnetic waves propagating to the right and the left in layers p and p+l
evaluated at the planar interface z = zp.

2.5 MULTILAYER SYSTEM MATRIX OPERATOR

We will next generate a multilayer system matrix operator that will ultimately allow
us to determine the mathematical relationship between the incident, reflected, and
transmitted waves depicted in figure 1. First, we define a new 8 by 8 matrix involving the
8 by 8 matrices in equation (38), namely

All (zP) A]- (ZP) _ S S1 (zP) S 12 (z P) (Zp) S 2 (ZP)(42)
A2 (Z ) A2 (-)]) ), $21 ((p L2 S21 Z)JS11('

2 1( P -P+ "" (Pp '22 (+ - P) p

The superscript, -1, denotes the multiplicative matrix inverse operation. Equtation (38)

can now be rewritten in the form

1 r1P. (4 3 )o A,1 (Z) A1 , (zV) (43)

12



Equation (43) allows us to calculate the electric field vectors in subregion p+l in terms of

the electric field vectors in subregion p. The multilayer system matrix operator can now

be computed through successive matrix multiplications leading to the following

equation

FrH r1, A1l (ZP) A1261(

L = (44)[F21r A,,sv (=Z A l ) A,('7 )1

With the use of the above multilayer system matrix operator, we can now express the
electric field vectors in the right semi-infinite subregion N+1 in terms of the electric field
vectors in left semi-infinite subregion 0. The result is

R = r R " (45)
[I[f I1 L1  Lr2, r22 s IWI'1l

For simplicity in notation we let

[fi] = [ [fo I Ro10  (46)

[fY] = [ [folI LIo (47)

[ftI = I Ifm;IR] N + (48)

The three vectors in equations (46), (47), and (48) represent the incident, reflected, and
transmitted electric field vectors respectively. Based on the illumination scenario
depicted in figure 1, there is no electromagnetic wave in subregion N+1 propagating to
the left, hence

I [f01I L] N+1 = [jo. (49)

With the use of equations (46) through (49), we can now rewrite equation (45) in the form

13



With the use of equation (50), we can now solve for the reflected and the transmitted

electric field vectors in terms of the incident electric field vector. We obtain the result

[I4 -[ I-, I[f (51)

[ +4 = +[- 1 ] - F 2 -F 21 i VJ. (52)

The reflectance, P, and transmittance, T', coefficients (Born & Wolf. 1965) of the
multilayer medium can now be computed using the following equations

R= f (53)
[fi] H [fi]

T ff] H [f,] n, cos (((5)[fi] H [fi] rti COS (0,)

The superscript, H, denotes the Hermitian conjugate operation. The quantities n, and n,

correspond to the ordinary indices of refraction for subregions 0 and N + 1 respectively.
The angles 6i and 0t represent the angle of incidence and angle of refraction for the

subregions 0 and N + 1 respectively. These angles and indices of refraction obey the

Snell's law relation

n,sin (0.) = nsin (0). (55)

Equation (54) tacitly assumes that the subregions 0 and N+1 are nonconducting.
Typically these two subregions correspond to either vacuum, air, or glass. There are no

restrictions placed on the optical properties of the dielectric layers constituting the
multilayer medium. Equations (53) and (54) are the quintessential equations necessary

for calculating the reflection and transmission characteristics of the multilhyer medium.
It is noted that the wavelength, angle of incidence, and polarization state of the incident
wave can be arbitrarily chosen. These equations serve as the basis for the applications

considered in the following section.
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3.0 APPLICATIONS

Based on the 8 by 8 matrix representation of electromagnetic theory being developed

by the author, a computer software package is currently being written and tested at

NRaD to handle a variety of scenarios involving electromagnetic wave propagation

through matter. This software package is referred to as the MATURE Program. MATURE

is the acronym for Matrix Approach To Understanding Relativistic Electrodynamics.

MATURE is written in MATLAB code for a Sun 4 SPARCstation 2 workstation. One

feature of the MATURE Program is its ability to solve electromagnetic wave propagation

problems involving multilayer optical structures. The required inputs to the MATURE

Program for problems of this nature are based on the following statements:

1. Enter total number of optical layers, N.

2. Enter thickness, Tp, of each layer in nanometers (nm) for p = 1, 2,..., N

3. Enter ordinary refractive index, np, of each subr2gion p = O, 1, 2,..., N, N+1.

4. Enter attenuation index, , P, of each subregion p = 0, 1, 2,..., N, N+7.

5. Enter angle of incidence, Oi, of incident plane-wave in degrees (deg).

6. Enter wavelength, X, of incident plane-wave in nm.

7. Specify polarization state, Transverse Electric (TE) or Transverse Magnetic (TM),

of incident plane-wave.

8. Determine the variable of interest, namely wavelength, ., angle of incidence, O,,

or thickness, T., of the nth layer.

9. If the variable of interest is the wavelength, then

a. Specify minimum value of wavelength, Xmi.n in nm,

b. Specify maximum value of wavelength, XAma., in nm,

c. Specify incremental value of wavelength, AX, in nm.

10. If the variable of interest is the angle of incidence, then

a. Specify minimum value of angle of incidence, 0 ,. ,,,, in deg,

b. Specify maximum value of angle of incidence, .,axin deg,

c. Specify incremental value of angle of incidence, AO,, in deg.

11. If the variable of interest is the thickness of the nth layer, then

a. Specify layer number, n, of interest,

b. Specify minimum thickness, T, m,, of nth layer in nm,

c. Specify maximum thickness, T a of nth layer in nm,

d. Specify incremental thickness, AT, of nth layer in nm.

The outputs to the MATURE Program are the reflectance, P., and transmittance, 'T, as a

function of the variable of interest.
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With the use of the MATURE Program, a number of examples are considered in this
section that illustrate the utility of the 8 by 8 matrix representation in solving
electromagnetic wave propagation problems involving multilayer optical media. The
examples considered involve: (1) reflection and refraction at a single interface separating
two nonconducting dielectric media, (2) evanescent wave coupling from one dielectric
medium into another via a vacuous thin film, (3) the reflection and transmission
properties of a single conducting metal thin film, (4) the reflection and transmission

characteristics of a multilaver antireflection coating structure, (5) the reflection and
transmission properties of a multilayer high-reflectance mirror, and (6) the reflection and
transmission characteristics of a multilayer interference band-pass filter.

3.1 SINGLE SURFACE REFLECTION AND REFRACTION

For our first example we consider reflection and refraction at a planar interface
separating two nonconducting dielectric media. This corresponds to a geometry in
which N = 0 in figure 1. It is convenient to consider two special cases. The first case is that
in which the electric field vector of the incident wave is parallel to the planar interface.
This is commonly referred to as the transverse electric or TE polarization case. The
second case is that in which the magnetic field vector of the incident wave is parallel to
the interface. This is known as the transverse magnetic or TM polarization case. The
general case is handled by using appropriate linear combinations of these two special
cases. Figure 2 shows the results obtained from the MATURE Program for a rare-to-
dense (external reflection) scenario (Fowles, 1968). The left semi-infinite subregion of
space in figure 1 is a vacuum and the right semi-infinite subregion is a nonconducting
medium with ordinary refractive index equal to 1.5. The wavelength of the incident
wave was 500 nm and the angle of incidence was chosen as the variable of interest. It is
apparent from figure 2 that, for the TM case, the reflectance is zero at the Brewster angle
(polarization angle) value of 56.30 predicted by

0, = atan LI] = atanl--]" (56)

Also note that the reflectance at 01 = 0' is equal to 4 percent, which is in agreement with

the formula

R = - (57)

used to predict (Fowles, 1968) reflectance at normal incidence. Figure 3 illustrates the
results obtained for a dense-to-rare (internal reflection) scenario (Fowles, 1968). For this
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REGION THICKNESS REFRACTIVE ATTENUATION

(nm) INDEX INDEX

LEFT 1.000 0.000

RIGHT 1.500 0.000

Wavelength: 500.0 (nm)

REFLECTANCE (%) TRANSMITTANCE (%)
100 . IO0..M 100
90 90 TM
80 80
70( 70T
60 60
50 50
40 40
30 T) 30
20 20
10 TM 10-

0 10 20 30 40 50 60 70 8090 10 20 3040 50 60 70 8090
Angle of Incidence (deg) Angle of Incidence (deg)

Figure 2. Single surface (rare-to-dense).
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REGION THICKNESS REFRACTIVE ATTENUATION

(nm) INDEX INDEX

LEFT 1.500 0.000

RIGHT 1.000 0.000

Wavelength: 500.0 (nm)

REFLECTANCE (%) TRANSMITTANCE (%
100 100
90 90 TE TM
80 80
70. 70
60 60
50 50
40 40

30 30-
20 TE 20
10 TM 10

0 102030405060708090 00 10203040 50 60 70 80 90
Angle of Incidence (deg) Angie of Incidence (deg)

Figure 3. Single surface (dense-to-rare).
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scenario, the right semi-infinite subregion of space is a vacuum and the left semi-infinite

subregion is a nonconducting medium with ordinary retractive index equal to 1.5.

Again, the wavelength was set equal 500 nm in the MATURE Program and the angle of
incidence was chosen as the variable of interest. The Brewster angle for this scenario is

equal to 33.7'. The reflectance at normal incidence is again 4 percent. In addition, we

observe that total internal reflectance occurs for angles of incidence greater than the
critical angle (Fowles, 1968) of 41.80 predicted by the formula

0c = asin ; = asin I L . (58)

The reflectance and transmittance plots in both figures 2 and 3 are in excellent agreement

with results found in standard textbooks on optics, e.g., Born & Wolf (1965) and Fowles
(1968), treating this subject.

3.2 EVANESCENT WAVE COUPLING

In the next example, we consider the transport of electromagnetic energy between
two semi-infinite nonconducting dielectric media separated by a vacuous thin film. This
corresponds to N = I in the geometry of figure 1. For this example, the ordinary
refractive index of each dielectric medium was set equal to 1.5. The wavelength of the

incident wave was set equal to 500 nm. Only the TF polarization case was considered.

The thickness of the vacuous thin film was varied between 0 and 1000 nm. Three

different test cases were considered corresponding to angles of incidence of 0', 380, and

450, respectively. Figure 4 summarizes the results obtained using the MATURE Program.
Note that the critical angle for this example is equal to 41.80. For angles of incidence less

than the critical angle, the vacuous thin film behaves as an optical cavity. The periodic

variations in both the reflectance and transmittance of the multilayer optical structure,
with thin-film thickness, is clearly obvious from the plots in figure 4. However, for angles

of incidence exceeding the critical angle, the periodic behavior of the reflectance and
transmittance of the multilayer structure ceases. This periodic behavior has been
replaced by an exponential decrease (increase) in the transmittance (reflectance) of the

multilayer structure with increasing values of the thin-film thickness. Notice how the
optical structure becomes totally reflecting for all practical purposes beyond a thin-film

thickness of about 600 nm when the angle of incidence is equal to 45O. The behavior of a

structure of this nature for angles of incidence exceeding the critical angle is attributed to

a phenomena called evanescent wave coupling. For a detailed discuI•.ýzc on et'anescent
wave coupling, the rcader is referred to Fowles (1968).
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.500 0.000

1 1000.0 1.000 0.000

RIGHT 1.500 0.000

Incidence Angle: 0, 38, 45 (deg) Wavelength: 500.0 (nm)

REFLECTANCE (%) TRANSMITTANCE (%)
100 100,
90 45 90
80- 80-
70. 38 70.
60 60
50 50
40 40
30 30
20 20

0

0 200 400 600 800 1000 0 200 400 600 800 1000
Thickness (nm) Thickness (nm)

Figure 4. Vacuous thin film (TE polarization).
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3.3 SINGLE CONDUCTING THIN FILM

For our next example, we consider a multilayer optical medium consisting of a single

conducting metallic thin film separating two semi-infinite dielectric subregions of space.
This corresponds to N = I in the geometry of figure 1. There are two scenarios we wish to

consider. In the first scenario, the left semi-infinite subregion of space in figure 1 is a
vacuum and the right semi-infinite subregion is a dielectric medium with ordinary

refractive index equal to 1.5. The ordinary refractive index of the metal film is 3.5. The
attenuation index of the metallic thin film was set equal to three different values, namely

0.0, 0.1, and 0.2. The thin-film structure was normally illuminated by a plane-wave of
wavelength 500 nm. For normal incidence there is no distinction between the TE and TM

polarization cases. The variable of interest was the thin-film thickness. The thickness was
varied between 0 and 300 nm. In figures 5, 6, and 7 are plots of the reflectance and

transmittance of the metallic thin-film structure as a function of thin-film thickness for
the attenuation index values of 0.0, 0.1, and 0.2 respectively. The results summarized in
these three figures are in excellent agreement with similar results reported by Born and
Wolf (1965).

The second scenario considered involves a metallic thin film separating two vacuous

semi-infinite subregions of space. The ordinary refractive and attenuation index values,
(n, K,)), chosen for the thin film correspond to values for real metals. In particular, the
following metals were considered: silver (0.200, 17.200); aluminum (1.440, 3.632); gold

(0.470, 6.021); copper (0.620, 4.145); and iron (1.510, 1.079). The thin-film structure was
illuminated at normal incidence by a plane-wave of wavelength 589.3 nm. The variable
of interest was the thickness of the thin film that was varied between 0 and 100 nm.

Results obtained for the five metallic thin films considered are shown in figures 8

through 12. Each of these figures clearly indicates that the transmittance of a metallic

thin film approaches zero as the thin-film thickness increases. In addition, the reflectance

of a metallic thin film approaches a maximum value with increasing thin-film thickness.
The maximum value of the reflectance is predicted (Born & Wolf, 1965) by the equation

n= (1 + KI) +1 -21 (59)

/I n ( 1 + K ) + 1 + 2n1

The maximum values of the reflectance obtained for the various thin films considered

are from equation (59): silver (0.94); aluminum (0.83); gold (0.82): copper (0.73); and iron

(0.33).
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 300.0 3.500 0.000

RIGHT 1.500 0.000

Incidence Angle: 0.0 (deg) Wavelength: 500.0 (nm)

REFLECTANCE (%) TRANSMITTANCE (%)
100 100
90 90
80 80
70 70
60 60
50 50
40. 40
30 30
20 20-
10 10

0o 0
0 60 120 180 240 300 0 60 120 180 240 300

Thickness (nm) Thickness (nm)

Figure 5. Metallic thin film, attenuation index value of 0.0.
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 300.0 3.500 0.100

RIGHT 1.500 0.000

Incidence Angle: 0.0 (deg) Wavelength: 500.0 (nm)

REFLECTANCE (%) TRANSMITTANCE (%)
100 100
90 90
80 80
70 70
60- 60
50 50.
40 40
30 30
20 20.
10 10
0• 0 .
0 60 120 180 240 300 0 60 120 180 240 300

Thickness (nm) Thickness (nm)

Figure 6. Metallic thin film, attenuation index value of 0.1.
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 300.0 3.500 0.200

RIGHT 1.500 0.000

Incidence Angle: 0.0 (deg) Wavelength: 500.0 (nm)

REFLECTANCE (%) TRANSMITTANCE (%)
100 100
90 90
80 80
70. 70
60- 60
50.• 50.
40 40
30. 30
20 20
10 10

0 060 120 180 240 300 0 60 120 180 240 300
Thickness (nm) Thickness (nm)

Figure 7. Metallic thin film, attenuation index value of 0.2.
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 100.0 0.200 17.200

RIGHT 1.000 0.000

Incidence Angle: 0.0 (deg) Wavelength: 589.3 (nm)

REFLECTANCE (%) TRANSMITTANCE (%)
100 •100
90 90
80 80
70 70
60 60
50 50
40 40
30 30
20 20
10 10

0 20 40 60 80 100 0 20 40 60 80 100
Thickness (nm) Thickness (nm)

Figure 8. Silver tin tiilm.
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 100.0 1.440 3.632

RIGHT 1.000 0.000

Incidence Angle: 0.0 (deg) Wavelength: 589.3 (nm)

REFLECTANCE (%) TRANSMITTANCE (%)
100 100
90. 90
80 80
70 70
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50 50
40- 40
30 30
20- 20
10 10

10
0 20 40 60 80 100 0 20 40 60 80 100

Thickness (nm) Thickness (nm)

Figure 9. Aluminum thin film.
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 100.0 0.470 6.021

RIGHT 1.000 0.000

Incidence Angle: 0.0 (deg) Wavelength: 589.3 (nm)

REFLECTANCE (%) TRANSMITTANCE (%
100 100
90 90
80 80
70 70
60 60
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40 40
30 30
20 20
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20 40 60 80 100 0 20 40 60 80 100
Thickness (nm) Thickness (nm)

Figure 10. Gold thin film.
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 100.0 0.620 4.145

RIGHT 1.000 0.000

Incidence Angle: 0.0 (deg) Wavelength: 589.3 (nm)

REFLECTANCE (%) TRANSMITTANCE (%)
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60 60
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40 40
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Thickness (nm) Thickness (nm)

Figure 11. Copper thin film.
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 100.0 1.510 1.079

RIGHT 1.000 0.000

Incidence Angle: 0.0 (deg) Wavelength: 589.3 (nm)

REFLECTANCE (%) TRANSMITTANCE (%)
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70 70
60 60
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40- 40
30- •30
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0- 01
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Thickness (nm) Thickness (nm)

Figure 12. Iron thin film.
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3.4 ANTIREFLECTION COATINGS

When an electromagnetic wave impinges upon an optical surface of a prism or lens, a
portion of the wave is reflected at the surface. This reflection loss can have deleterious
effects on the overall transmission characteristics of the optical device. Reflection losses
reduce the overall transmission of optical devices and instruments and often produce
unwanted ghost images. The use of antireflection coatings on optical surfaces is a
practical method for reducing these undesirable effects. A detailed treatment on the
theory of antireflection coatings may be found, for example, in Baumeister
Musset and Thelen (1970), and MacLeod (1986).

We now consider a multilayer optical structure consisting of anywhere from one to
four thin-film layers for the purpose of reducing the reflection loss at the interface
between two dielectric media. In particular, we will consider the case when the left semi-
infinite subregion of space in figure I is vacuum and the right semi-infinite subregion is
glass with an ordinary refractive index equal to 1.52. The multilayer optical structure is
illuminated by a plane-wave at normal incidence. The wavelength was chosen as the
variable of interest with values ranging over visible portion of the electromagnetic
spectrum from 400 nm (blue) to 700 nm (red). Figures 13 through 16 show the reflectance
and transmittance plots obtained when antireflection coatings are employed. The
thicknesses and optical properties of the various layers comprising the various
multilayer structures considered are summarized in these figures. It is obvious from
these figures that the reflection loss at a single surface for normal incidence is
approximately 4 percent when the surface is uncoated. Using a single antireflection
coating (figure 13) can reduce the losses to approximately 2 percent over the visible
spectrum. Two coatings (figure 14) can reduce the reflection losses to approximately I
percent. Three and four coatings (figures 15 and 16) can further reduce and even
eliminate these reflection losses over a substantial portion of the visible spectrum. The
MATURE Program computer results presented in figures 13 through 16 are in excellent
agreement with results obtained by Musset and Thelen (1970) for the same multilaver
structures.

Antireflection coatings can, of course, be used to eliminate unwanted reflections in
other portions of the electromagnetic spectrum as well. Figure 17 summarizes the results
obtained from the MATLAB 4.0 computer program for wavelengths in the infrared
portion of the spectrum for a two-layer antireflection coating. These results are also in
excellent agreement with those reported by MacLeod (1986).

30



REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 92.4 1.380 0.000

RIGHT 1.520 0.000

Incidence Angle: 0.0 (deg)

REFLECTANCE (%) TRANSMITTANCE (%)
5 100

Uncoated
4- 99. Coated

3. 98

97

1 -Cated96

Uncoated

280 500 600 700 '"OO 500 600 700
Wavelength (nm) Wavelength (nm)

Figure 13. Antireflection coating (1 layer).
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 92.4 1.380 0.000
2 159.4 1.600 0.000

RIGHT 1.520 0.000

Incidence Angle: 0.0 (deg)

REFLECTANCE (%) TRANSMITTANCE (%)
5 100

Uncoated

4 99

3 98

2- 97Coated

1 96
U ncoated

0 500 600 700 00 500 600 700
Wavelength (nm) Wavelength (nm)

Figure 1-4. Antireflection coating (2 layers).
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 95.1 1.380 0.000
2 122.1 2.150 0.000
3 78.7 1.700 0.000

RIGHT 1.520 0.000

Incidence Angle: 0.0 (deg)

REFLECTANCE (%) TRANSMITTANCE (%)5 100
Uncoated 

Coated

4 99

3 98

2 97

196 _ _ _ _ _ __ _ _ _ _

Coated L' ncoated

00 500 600 700 •00 500 6C0 700
Wavelength (nm) Wavelength (nm)

Figure 15. Antireflection coating (3 layers).
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 92.1 1.384 0.000
2 108.5 2.350 0.000
3 82.3 1.550 0.000
4 92.1 1.384 0.000

RIGHT 1.520 0.000

Incidence Angle: 0.0 (aeg)

REFLECTANCE (%) TRANSMITTANCE (%)
5 100

Uncoated Coated

4 99

3 98

2 97

1 96-
Coated Uncoated

500 600 700 100 500 600 700
Wavelength (nm) Wavelength (nm)

Figure 16. Antireflection coating (4 layers).
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000
1 550.3 1.590 0.000
2 347.2 2.520 0.000

RIGHT 4.000 0.000

Incidence Angle: 0.0 (deg)

REFLECTANCE (%) TRANSMITTANCE (%100100
90 90 Coated
80 80
70 70(
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50. 50 Uncoated
40 Uncoated 40
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10 Coated 1000 ,2 3 4 5 6 7 2 3 4 5 6 7

Wavelength (urn) Wavelength (urn)

Figure 17. Antireflection coating (IR).
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3.5 HIGH-REFLECTANCE COATINGS

Overcoating a glass substrate with a multilayer dielectric thin-film coating is one

practical method of fabricating high-reflectance mirrors used in both Fabry-Perot

interferometers and laser cavities. Often, these optical devices require mirrors that not
only have a reflectance close to 100 percent, but which also transmit a substantial portion
of the electromagnetic energy that is not reflected. Metallic thin films of silver,

aluminum, or gold seldom attain a reflectance that exceeds 90 percent in the visible
portion of the electromagnetic spectrum. However, multilayer dielectric mirrors used for

this purpose can attain a reflectance of over 99 percent (Baumeister, 1965).

One type of multilayer dielectric coating used in the fabrication of high-reflectance
mirrors is the quarter-wave stack (Baumeister, 1965). Basically, the quarter-wave stack is

a multilayer structure where each layer has the same optical thici-ness, and with

refractive indices that alternate between two values. The optical thickness, not to be
confused with geometrical thickness of a layer, is simply the product of the refractive
index of the layer with its geometrical thickness.

We now consider a multilayer structure having a quarter-wave stack geometry for

the purpose of increasing the reflectance at the interface between two dielectric media.
Four cases are considered: (1) single-layer; (2) three-layer; (3) five-layer; and (4) a 15-
layer stack. We will consider the case when the left semi-infinite subregion of space in

figure 1 is vacuum and the right semi-infinite subregion is glass with an ordinary

refractive index equal to 1.51. Let the multilayer quarter-wave stack be illuminated by a
plane-wave at normal incidence. The wavelength was chosen as the variable of interest.

The range of wavelength values varied between 450 nm and 650 nm. Figures 18 through

21 show the reflectance and transmittance plots obtained when high-reflectance coatings
are employed. The geometrical thicknesses and optical properties of the various layers

comprising the quarter-wave stack considered are summarized in these figures. It is

obvious from these figures that the reflectance at a single surface for normal incidence is
approximately 4 percent when the surface is uncoated. Using a single high-reflectance

coating (figure 18) can increase the reflectance to over 30 percent over the spectral range

of interest. Three coatings (figure 19) can increase the reflectance to over 50 percent and
five coatings (figure 20) can increase the reflectance to over 70 percent. A 15 layer
quarter-wave stack (figure 21) can increase the reflectance to over 99 percent over a

substantial portion of the visible spectrum. The results of the MATURE Program
presented in figures 18 through 21 are in excellent agreement with results reported by

Musset and Thelen (1970) for the same quarter-wave stack structures.
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 57.8 2.300 0.000

RIGHT 1.510 0.000

Incidence Ang!3: 0.0 (deg)

REFLECTANCE (%) TRANSMITTANCE (%)
100 100
90 90 Uncoated
80 80
70i 70
60 60 Coated
50 50
40 Coated 40
30- 30
20 20
10 Uncoated 10

50 500 550 600 650 50 500 550 600 650
Wavelength (nm) Wavelength (nm)

Figure 18. High-reflectance coating (1 layer).
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 57.8 2.300 0.000
2 96.4 1.380 0.000
3 57.8 2.300 0.000

RIGHT 1.510 0.000

Incidence Angle: 0.0 (deg)

REFLECTANCE (%) TRANSMITTANCE (%)
100 100
90 90 Uncoated

80 8080. ~Coated80

70- 7060 60.

50- 50-• .•....•
40. 40 Cae

30- 30-
20- 20.

10 Uncoated 10

40 500 550 600 650 X50 500 550 600 650
Wavelength (nm) Wavelength (nm)

Figure 19. High-reflectance coating (3 layers).
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 57.8 2.300 0.000
2 96.4 1.380 0.000
3 57.8 2.300 0.000
4 96.4 1.380 0.000
5 57.8 2.300 0.000

RIGHT 1.510 0.000

Incidence Angle: 0.0 (deg)

REFLECTANCE (%) TRANSMITTANCE (%)
100 100
90 90 Uncoated
80 ? w 80
70 70
60- 60-

50 50
40 40

30 30C
200
10 Uncoated 10

250 500 550 600 650 0 500 550 600 650
Wavelength (nm) Wavelength (nm)

Figure 20. High-reflectance coating (5 layers).
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 57.8 2.300 0.000
2 96.4 1.380 0.000
3 57.8 2.300 0.000
4 96.4 1.380 0.000
5 57.8 2.300 0.000
6 96.4 1.380 0.000
7 57.8 2.300 0.000
8 96.4 1.380 0.000
9 57.8 2.300 0.000

10 96.4 1.380 0.000
11 57.8 2.300 0.000
12 96.4 1.380 0.000
13 57.8 2.300 0.000
14 96.4 1.380 0.000
15 57.8 2.300 0.000

RIGHT 1.510 0.000

Incidence Angle: 0.0 (deg)

REFLECTANCE (%) TRANSMITTANCE (%)100 100__

90 Coated 90 Uncoated

80 80
70t 70
60 60
50 50
40 40
30 30
20 20
10 Uncoated 10 Coated

5o00 5o50 600 6505 0 500 550 600 650
Wavelength (nm) Wavelength (nm)

Figure 21. High-reflectance coating (15 layers).
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3.6 MULTILAYER INTERFERENCE BAND-PASS FILTER

Multilayer interference band-pass filters are often used in place of a prism or

diffraction grating in spectrophotometric systems. These filters, for a given resolving

power, are the most luminous instrument available. The advantage of using only

dielectric films, as opposed to metallic films, is that the peak transmittance is high and a
narrowband pass can be achieved. A detailed discussion on the fabrication and use of

multilayer interference filters can be found in Hernandez (1986).

The quarter-wave stack previously mentioned in our discussion on high-reflectance

coatings also finds use in the fabrication of multilayer interference band-pass filters. One
geometry involves sandwiching a half-wave spacer between two identical quarter-wave

stacks (Baumeister, 1965). We now consider a multilayer structure having this geometry.
Three cases are considered: (1) a 7-layer; (2) an 11-layer; and (3) a 15-layer filter. We

consider the scenario for which the left semi-infinite subregion of space in figure 1 is
vacuum and the right semi-infinite subregion is glass with an ordinary refractive index

equal to 1.51. Let the multilayer filter be illuminat,,d by a plane-wave whose wavelength
is varied between 500 nm and 600 nm. Shown in figures 22 through 24 are reflectance

and transmittance plots obtained for the 7-layer, 11-layer, and 15-layer filters respectively

for the case of normal incidence. The geometrical thicknesses and optical properties of

the layers comprising these various multilayer filters are also summarized in these
figures. It is obvious from these figures that the band pass of an interference filter

decreases as the number of layers in each of the quarter-wave stacks increases. Shown

next in figures 25 and 26 is the effect angle of incidence has on the reflectance and

transmittance characteristics of an 11-layer interference filter. Plots for angles of

incidence equal to 00, 30', and 450 are shown. The results presented in figure 25 are for

an incident wave having a TE polarization state, whereas those in figure 26 correspond
to an incident wave having a TM polarization state. It is obvious from these figures how

the band pass of the interference filter is shifted to shorter wavelengths as the angle of

incidence is increased. We see that the interference filter characteristics also depend on

the polarization state of the incident plane-wave.

Shown in figure 27 are reflectance and transmittance plots obtained using the

MATURE Program of a three-laver Fabry-Perot etalon where two identical silver thin
films are used in conjunction with a single dielectric spacer. Notice, as a result of

absorption within the metallic films of the etalon, how the overall transmittance of the

etalon is greatly reduced in comparison to that of an all-dielectric interference filter. This

demonstrates the advantage of using only dielectric thin films in interference filters.
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 59.8 2.300 0.000
2 99.6 1.380 0.000
3 59.8 2.300 0.000
4 199.3 1.380 0.000
5 59.8 2.300 0.000
6 99.6 1.380 0.000
7 59.8 2.300 0.000

RIGHT 1.510 0.000

Incidence Angle: 0.0 (deg)

REFLECTANCE (%) TRANSMITTANCE (%)
100 100
90 90
80 80
70 70
60 60
50 50
40 40
30 30
20 20
10 10

500 525 550 575 600 500 525 550 575 600
Wavelength (nm) Wavelength (nm)

Figure 22. Band-pass filter (7 layers).
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000
1 59.8 2.300 0.000
2 99.6 1.380 0.000
3 59.8 2.300 0.000
4 99.6 1.380 0.000
5 59.8 2.300 0.000
6 199.3 1.380 0.000
7 59.8 2.300 0.000
8 99.6 1.380 0.000
9 59.8 2.300 0.00010 99.6 1.380 0.00011 59.8 2.300 0.000

RIGHT 1.510 0.000

Incidence Angle: 0.0 (deg)

REFLECTANCE (%) TRANSMITTANCE (%)
100 100
90- 90
80 80
70 70
60 60
50. 50
40 40O
30 30
20 20:
10 10
500 525 550 575 600 500 525 550 575 600

Wavelength (nm) Wavelength (nm)

Figure 23. Band-pass filter (11 layers).
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 59.8 2.300 0.000
2 99.6 1.380 0.000
3 59.8 2.300 0.000
4 99.6 1.380 0.000
5 59.8 2.300 0.000
6 99.6 1.380 0.000
7 59.8 2.300 0.000
8 199.3 1.380 0.000
9 59.8 2.300 0.000

10 99.6 1.380 0.000
11 59.8 2.300 0.000
12 99.6 1.380 0.000
13 59.8 2.300 0.000
14 99.6 1.380 0.000
15 59.8 2.300 0.000

RIGHT 1.510 0.000

Incidence Angle: 0.0 (deg)

REFLECTANCE (%) TRANSMITTANCE (%)
100 100
90 90
80 80
70 70
60 60
50 50
40 40
30 30
20 20
10- 10.

500 525 550 575 600 500 525 550 575 600
Wavelength (nm) Wavelength (nm)

Figure 24. Band-pass filter (15 layers).
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000
1 59.8 2.300 0.000
2 99.6 1.380 0.000
3 59.8 2.300 0.000
4 99.6 1.380 0.0005 59.8 2.300 0.000
6 199.3 1.380 0.000
7 59.8 2.300 0.000
8 99.6 1.380 0.0009 59.8 2.300 0.000

10 99.6 1.380 0.000
11 59.8 2.300 0.000

RIGHT 1.510 0.000

Incidence Angle: 0, 30, 45 (deg)

REFLECTANCE (%) TRANSMITTANCE (%)100 100

90 30 0 90
80 80,
70. 70
60 60
50 50
40 40
30 30
20 20
10 10 30 0

75 500 525 550 575 275 500 525 550 575
Wavelength (nm) Wavelength (nm)

Figure 25. Band-pass filter (11 layers, TE polarization).
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 59.8 2.300 0.000
2 99.6 1.380 0.000
3 59.8 2.300 0.000
4 99.6 1.380 0.000
5 59.8 2.300 0.000
6 199.3 1.380 0.000
7 59.8 2.300 0.000
8 99.6 1.380 0.000
9 59.8 2.300 0.000

10 99.6 1.380 0.000
11 59.8 2.300 0.000

RIGHT 1.510 0.000

Incidence Angle: 0, 30, 45 (deg)

REFLECTANCE (%) TRANSMITTANCE (%)
1001 100
90 90

80 45 30 080.
70q 70
60 60
50 50
40 40
30 . 30 45
20. 20-3
10 10

45 500 525 550 575 75 500 525 550 575
Wavelength (nm) Wavelength (nm)

Figure 26. Band-pass filter (11 layers, TM polarization).
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REGION THICKNESS REFRACTIVE ATTENUATION
(nm) INDEX INDEX

LEFT 1.000 0.000

1 34.0 0.200 17.200
2 340.0 1.380 0.000
3 34.0 0.200 17.200

RIGHT 1.510 0.000

Incidence Angle: 0.0 (deg)

REFLECTANCE (%) TRANSMITTANCE (%)
100 100
90. 90
80 80
70 70
60 60
50 50
40 40
30 30
2 '20.

00 525 550 575 600 500 525 550 575 600
Wavelength (nm) Wavelength (nm)

Figure 27. Fabry-Perot etalon with silver mirrors.
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4.0 SUMMARY AND CONCLUSIONS

Presented in this publication is a new approach, based entirely on the use of matrices,
for solving electromagnetic wave propagation problems involving multilaver dielectric
media with planar boundaries. This new approach is based upon a reformulation of the
traditional vector form of the Maxwell field equations into a single matrix equation
containing square 8 by 8 differential matrix operators. Boundary conditions are taken
into account by partitioning both the electromagnetic wavefunctions and the dielectric,
permeability, and conductivity matrices describing the optical medium using
combinations of F-:eaviside step functions called partition functions. Using
monochromatic plane-wave representations of the electromagnetic field, we were able to
develop an 8 by 8 system operator description of wave propagation through the entire
multilayer medium. This operator description led to a set of equations for predicting
both the reflection and -transmission characteristics of a multilaver medium with planar
boundaries illuminated by a monochromatic plane-wave electromagnetic radiation.

Because of the power of matrix operations, many of the fundamental relationships
and results -in electromagnetic wave propagation theory are easily derived without the
need for the usual plethora of vector calculus identities that have become the standard in
these derivations: Stokes' theorem, the Divergence theorem, the formula for the curl of a
curl, etc. Instead, mathematical operations involving matrix multiplication, matrix
inversion, and eigensolutions of matrices can be employed. Readily available off-the-
shelf computer software packages, like MATLAB for numerical computations and
MATHEMATICA for symbolic manipulations, are well suited for these matrix
operations. A computer software package entitled MATURE is currently being written
and tested at NRaD to handle a variety of scenarios involving electromagnetic wave
propagation. MATURE is the acronym for Matrix Approach To Understanding
Relativistic Electrodynamics. The MATURE computer software program is being written
using MATLAB code for use on a Sun 4 SPARCstation 2 workstation.

With the present version of the MATURE Program, several numerical examples were
considered that illustrate the power and utility of using the 8 by 8 matrix representation
in solving wave propagation problems. Examples considered included: (1) reflection and
refraction at a single interface separating two dielectric media, (2) evanescent wave
coupling from one dielectric medium into another via a vacuous thin film, (3) the
reflection and transmission properties of a single conducting thin metallic film, (4) the
reflection and transmission characteristics of a multilayer antireflection coating
structure, (5) the reflection and transmission properties of a multilayer high-reflectance
mirror, and (6) the reflection and transmission characteristics of a multilayer interference
band-pass filter. The MATURE Program is quite general in that the reflection and
transmission characteristics of the multilayer medium can be determined for arbitrarily
chosen wavelengths, angles of incidence, and polarization states of the incident
electromagnetic radiation.
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APPENDIX A

PARTITION FUNCTIONS

The partition functions, first introduced in section 2.3 of this report, are defined in

this appendix. Recall that the multilayer optical medium depicted in figure 1 consists of
a finite number, N, of planar layers each having a finite thickness as measured along the

z-direction. All layer interfaces are parallel as well as being orthogonal to the z-axis. Each
of these layers is labelled by an integer, n, where n = 1, 2 ... , N. To the left of the
multilayer medium is a semi-infinite subregion of space denoted by the label 0. And to
the right of the multilayer medium is a second semi-infinite subregion of space denoted

by the label N+1. Associated with each of the layers comprising the multilayer medium
and the two semi-infinite subregions of space is a partition function. These partition

functions are defined by equations (A.1) through (A.3) below. Those properties of the
partition functions pertinent to this investigation are contained in equations (A.4)

through (A.8). It is noted that the partition functions are simply Heaviside unit step
functions (Bracewell, 1965) or linear combinations thereof.

The partition function associated with the semi-infinite subregion of space labelled 0

is defined by the following equation

I z< z0

To (Z) -- (A.1)

0 otherwise.

Associated with each layer, n, of the multilayer optical medium is a partition function

defined by

I Zn 1 • Z < Zn
T,, (z) -t(n = 1, 2, 3, ..... N)(A2

0 otherwise

The sami-infinite subregion of space labelled N+1 is represented by a partition function
defined by

1 ZN< z1
S(:N ) - t(A.3)

N+ 0 otherwise.
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All of the partition functions defined above satisfy the following property

TM (z) T n (Z) = 8mrm•P (z) (A.4)

where 8M is the Kronecker delta (Bracewell, 1965). Each partition function T (z) has a
first derivative with respect to the variable z, denoted by the function 4) (z)

Mathematically
S-= d•n (z) (n = 0, 1, 2,3, ... , ,N, N+I1).CA5

(Z) (Z (Az)
dzn

Using the fact that the first derivative of the Heaviside unit step is the Dirac delta

function (Bracewell, 1965), it can be easily shown that

(D0 (z) = -8 (z - z0 ) (A.6)

Dn(Z) = +5(z--Zn_ 1) - (z-zn) (n = 1,2,3, ... ,N) (A.7)

0 N+1(z) = + 3 (z-zN) (A.8)

where 5 (z) represents the Dirac delta function.
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APPENDIX B

ELECTROMAGNETIC PLANE-WAVE SOLUTIONS

Monochromatic electromagnetic plane-wave solutions satisfying the Maxwell field
equations are of vital importance to our understanding of wave propagation through a
multilayer optical medium. We start with the matrix representation of the Maxwell field

equations for an unbounded dielectric medium as summarized by equation (19) and
rewritten here in equation (B.1) for convenience.

-i M2]

For monochromatic electromagnetic plane-wave fields, the electromagnetic field vector
appearing in equation (B.1) can be expressed in the form

[fj : exp {i [r] T [k] }. 
(B.2)

The 4 by I vectors [f01J and [ff2] are both constant and describe the polarization
properties of the plane-wave field. With the use of equation (10), they can be expressed

in the form

[E0Y f01 = o[f0] = iE° and [f = H/' (B.3)

LEZI H0 Z

The relativistic 4-vectors [r] and [k] appearing in equation (B.2) are defined by

[r] E and [k Y (B.4)
Bk -

"c ~k
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where
iao

S= ict and kt = -. (B.5)
C

Again, the imaginary unit i is equal to - and c represents the speed of light in
vacuum. The quantity co represents the angular frequency of the monochromatic plane-
wave. The superscript, T, appearing in equation (B.2) denotes transpose. The dot (scalar)
product of the vectors [r] and [k] is given by

[r]T[k] = xk±+yk +zkz-cot = k.r-cot. (B.6)

The three-dimensional wave vector k above can be expressed in the form

Sk = (kX, k,,,kz) = k(x , ,(Xz) = k& (B.7)

where the scalar k is the wavenumber. The unit vector & has as its components the

direction cosines (xa, CC, /x, which satisfy the equation (Morrill, 1961)

cx2 + -2 + 2 . (B.8)x y z

Next we define two direction cosine matrices [aj and I a, ] by the equation

0 0 0 -a 0 -a +(X 0-
x z V

0 0 0 -ax +cXZ 0 -or 0[otI]J and [cx2]~ 0 (B.9)
[a-l0 - -ac+a 0 0

z y x
+ cX+a Y+ x 0 0 0 0 0

Recall that the 4 by 4 matrix [y] appearing in equation (B.1) is defined in terms of the
conductivity tensor [a] by equation (20), which has been rewritten in equation (B.10)
below for convenience.

47r[Y] = -- []. 
(B.10)

C

The complex dielectric tensor [t] (Born and Wolf, 1965) is defined in terms of the
dielectric tensor [El and the conductivity tensor [ac] by the equation

4 n
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It can be easily shown that substitution of the electromagnetic plane-wave solution (B.2)

back into the Maxwell field equations (B.1) gives the following matrix equation

By performing the matrix multiplication operations suggested in equation (B.12), it can

be easily verified that

[Xt4l [foil = [o] and [a1 ] [f021 = [ol (B.13)

and

[a 2] [fVo] = 0 V[fo2] and [a2] [f2] = Tc f0 ]. (B.14)

Equations (B.13) and (B.14) can be combined to form

[- 1 +a2 ] If0 ] = u -1 [fo2  and [- 1 +- 2] [f(J = X--f 011. (B.15)

which has numerical stability attributes not found in equation (B.14) under the operation

of matrix inversion. It can be easily shown that the sum of the direction cosine matrices
has the property

[a +%2 ] [c 1 +X 2 1 = -11] (B.16)

where [11 is the 4 by 4 identity matrix. This implies that I ( 1 + ot,] has a multiplicative

inverse given by

[a 1 + o2 1 = I[(1 + a 2 ]" (B.17)

Multiplying either equation in (B.15) by the matrix [IX1 + oa2 1 and using the remaining

equation in (B.15) with iie multiplicative property (1.16) gives

k 2C . (B.18)
k2c2 =1

From this equation we obtain the following expression for the wavenumber k

k = cý• (B..19)
C
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which we see is complex for a conductive medium. With the use of equation (B.19),

equation (B.15) can be rewritten in the finalized symmetrical form

[foil = -i a I +oa21 If02] and V021 = -i, ai-+[otlo [foi,. (B. 2 0)

For completeness, equation (B.20) is equivalent to the following vector equations

6 * EE =0 and 6t o Ho =0 (0.21)

E0 =- c(xHo) and HO = + (6(cx E0 ) (B.22)

where

Eo - (Eox EOy, Eoz) and H"o = (HO, Hoy, Hoz) (B.23)

Equations (B.21) and (B.22), and hence equation (B.20), express the transversal nature of

the electric and magnetic fields associated with the monochromatic electromagnetic

plane-wave solutions (B.2).

It is of interest to note that the complex index of refraction (Born and Wolf, 1965) is

given by the equation

h = i. (B.24)

In addition, the complex index of refraction can also be written in the following form

(Born and Wolf, 1965)

h = n (1 + iK) (B.25)

where both the quantities n and Kc are real. The quantity n is the ordinary refractive

index and K- is the attenuation index. The quantities n and K may be expressed in terms

of the material constants e, p, and a. Setting equation (B.24) equal to equation (B.25)

gives the relation

n2 (1 _ K2 ) = •.E and n2 K 21r (B.26)

It is noted that experimental values of the optical constants n and K for a variety of

materials may be found, for example, in Born and Wolf (1965).
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APPENDIX C

ELECTROMAGNETIC BOUNDARY CONDITIONS

The electromagnetic boundary conditions that must be satisfied at the planar
interface z = zP separating subregions p and p+i (see figure Cl below) are contained in
the matrix equation (33). This equation has been rewritten in equation (C.1) below for
convenience

Ir C2]I IF- C2 11. (Interface z=z,) (C.1)
SL CL C1 j Lf2

p

Figure C1. Planar interface z = zp, separating subregions p and p+i.

The matrices [C1 I and [C,1 appearing in equation (C.1) are given by equation (30).
Equation (C.1) can be written in the following simplified form

C2 I ]2 p+ 1

. ..



by using the following identity

C C1 E:C, ] G 01•C1C,] IC C2i-.I2 C C C11 ; OcG (C.3)

Thermatrices [G11 and [G,] are givenby

1000 F1 0 0 0]

0100 01 0 0

[G1] = and [G2] = (C.4)
0 0 £ 0 0 0 ý 0

0 0 0 L 0 0 0 I

It can be easily shown that the single matrix equation (C.2) is equivalent to the following
four boundary conditions in vector form evaluated at z = zp:

(1) The tangential component of the electric field is continuous

{fxE}, = { xE}jP, (C.5)

(2) The normal component of the electric displacement is continuous

{z-D}P = { *DjP.l (C.6)

(3) The tangential component of the magnetic field is continuous

{fxHjp = {zxH}p+1 (C.7)

(4) The normal component of the magnetic induction is continuous

{!B}IP = {j*B} 1+1 (C.8)

The vectors E, H, D, and B appearing in equations (C.5) through (C.8) are given by

E = (E2 , EI, E) and H = (HX, H", H,) (C.9)

D = c (E,, E, E,) and B = . (H", H,. HZ). (C.10)

The unit vector i points along the positive z-direction.
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We will now restrict our attention to equation (C.2) for the special case of
monochromatic plane-wave solutions previously described in detail in appendix B. It is
a well known fact that a dielectric multilayer optical medium illuminated by a

monochromatic electromagnetic plane-wave will give rise to two monochromatic plane-

waves propagating in opposite directions within each laver ot the multilayer medium
(Fowles, 1968). The electromagnetic field vector associated with any subregion within

the multilayer medium may, therefore, be represented by the superposition of two

electromagnetic field vectors

I + (C. )

Each of the field vectors on the right-hand side of equation (C.1l) has the monochromatic
plane-wave representation given by equation (B.2) in appendix B, that is,

JL f= f a exp {i[r] T[k]Ll 
(C13)

The subscripts R and L denote wave propagation to the right and left respectively.

Substitution of equation (C.11) into equation (C.2) leads to

G i ] [ [ ] } [0] 1 ' (C .14)

For equation (C.14) to be satisfied for all values of time, t, the angular frequencies of the

individual plane-waves in the two subregions, p and p+i, must satisfy the equation
IoRIP = f}R = {WOL} = 0). (C.15)

{CRp {CLp p41 p+1

Similarly, for equation (C.14) to be satisfied for all values of x and y on the planar

boundary z = zp, the x- and y-components of the wave vectors associated with each of

C-3



the individual plane-waves in the two subregions, p and p-,], must satisfy the equations

{k-XRl = {kXt } = {kxld,.j = {kkL}', (C-1b)

{ kyR = {I kyl.} I = I kYX I I" I {kyL} I = kk. (C. 17)

From equation (B.19) it is apparent that the wavenumbers associated with the R and L
waves in any subregion within the multilayer medium must be equal, namely

{kR} P = {k1 } = kP and {kR} 1 = {kL} Pp p1l kP ,1  (C.18)

With the use ofequations (C.16), (C.17), (C.18) and (B.7), (B.8) from appendix B, it can be

easily shown that the z-components of the wave vectors associated with each of the
individual plane-waves in the two subregions, p and p+i, must satisfy the equations

{kzR} =-{kZzL} p = {k'1P (C.19)

{kzR} 1  {kzL1+l = {kz}p÷1 " (C.20)

With the use of equations (C.12) through (C.20), the matrix equation (C.14) takes on the

finalized form

FG1 0]{[ 1] exp (+ izpk,) + '0o1 exp (-izpk,) }-(C.21)
L 02]R [f 0] L

fpi exp (+ izpk,) + 7f011 x(ik)
L 1 OR - L J + I
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